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Approach to jamming in an air-fluidized granular bed
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Quasi-two-dimensional bidisperse amorphous systems of steel beads are fluidized by a uniform upflow of
air, so that the beads roll on a horizontal plane. The short-time ballistic motion of the beads is stochastic, with
non-Gaussian speed distributions and with different average kinetic energies for the two species. The approach
to jamming is studied as a function of increasing bead area fraction and also as a function of decreasing air
speed. The structure of the system is measured in terms of both the Voronoi tessellation and the pair distribu-
tion function. The dynamics of the system is measured in terms of both displacement statistics and the density
of vibrational states. These quantities all exhibit tell-tale features as the dynamics become more constrained
closer to jamming. In particular the pair distribution function and the Voronoi cell shape distribution function
both develop split peaks. And the mean-squared displacement develops a plateau of subdiffusive motion
separating ballistic and diffusive regimes. Though the system is driven and athermal, this behavior is remark-
ably reminiscent of that in dense colloidal suspensions and supercooled liquids. One possible difference is that

kurtosis of the displacement distribution peaks at the beginning of the subdiffusive regime.
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One of the grand challenges in physics today is to under-
stand nonequilibrium systems, which evolve with time or
remain in a steady state by injection of energy. The concept
of jamming is helping to unify such seemingly disparate non-
equilibrium systems as supercooled liquids and dense collec-
tions of droplets, bubbles, colloidal particles, grains, and
traffic [1-3]. In all cases, the, individual units can be
jammed—stuck essentially forever in a single packing
configuration—by either lowering the temperature, increas-
ing the density, or decreasing the driving. But what changes
occur in the structure and dynamics that signal the approach
to jamming? Which features are generic, and which depend
on details of the system or details of the driving? A priori all
nonequilibrium systems are different and all details should
matter; therefore, the ultimate utility and universality of the
jamming concept is not at all obvious.

Granular materials have a myriad of occurrences and ap-
plications, and are being widely studied as idealized nonther-
mal systems that can be unjammed by external forcing [4-6].
Injection of energy at a boundary, either by shaking or shear-
ing, can induce structural rearrangements and cause the
grains to explore different packing configurations; however,
the microscopic grain-scale response is not usually homoge-
neous in space or time. This can result in fascinating phe-
nomena such as pattern formation, compaction, shear band-
ing, and avalanching, which have been explained by a
growing set of theoretical models with disjoint underlying
assumptions and ranges of applicability. To isolate and iden-
tify the universally generic features of jamming behavior it
would be helpful to explore other driving mechanisms,
where the energy injection is homogeneous in space and
time. One approach is gravity-driven flow in a vertical hop-
per of constant cross section, where flow speed is set by
bottom opening. Diffusing-wave spectroscopy and video im-
aging, combined [7], reveal that the dynamics are ballistic at
short times, diffusive at long times, and subdiffusive at inter-
mediate times when the grains are “trapped” in a cage of
nearest neighbors. Such a sequence of dynamics is familiar
from thermal systems of glassy liquids and dense colloids
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[3]. Another approach is high-frequency vertical vibration of
a horizontal granular monolayer. For dilute grains, this is
found to give Gaussian velocity statistics, in analogy with
thermal systems [8]. For dense monodisperse grains, this is
found to give melting and crystallization behavior also in
analogy with thermal systems [9,10].

In this paper, we explore the universality of the jamming
concept by experimental study of disordered granular mono-
layers. To achieve homogeneous energy injection we employ
an approach in which grain motion is excited by a uniform
upflow of air. This method was pioneered by the Rennes
group, e.g., Ref. [11], for driving a granular gas of disks. For
dilute spherical grains, that roll without slipping, the shed-
ding of turbulent wakes was found earlier to cause stochastic
motion that could be described by a Langevin equation re-
specting the Fluctuation-Dissipation theorem, in analogy
with thermal systems [12-14]. Now we extend this approach
to dense collections of grains. To prevent crystallized do-
mains, and hence to enforce homogeneous disorder, we use a
bidisperse mixture of two grain sizes. The extent of grain
motion is gradually suppressed, and the jamming transition is
thus approached, by both raising the packing fraction and by
decreasing the grain speeds in such as way as to approach
point J [15,16] in the jamming phase diagram. For a given
state of the system, we thoroughly characterize both structure
and dynamics using a broad set of statistical measures famil-
iar from study of molecular liquids and colloidal suspen-
sions. In addition to such usual quantities as coordination
number, pair-distribution function, mean-squared displace-
ment, and density of states, we also use more novel tools
such as a shape factor for the Voronoi cells and the kurtosis
of the displacement distribution. We shall show that the mi-
croscopic behavior is not in perfect analogy with thermal
systems. Rather, the two grain species have different average
kinetic energies, and their speed distributions are not Gauss-
ian. Nevertheless, the systematic change in behavior on ap-
proach to jamming is found to be in good analogy with ther-
mal systems such as supercooled liquids and dense colloidal
suspensions. Our findings support the universality of the
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jamming concept, and give insight as to which aspects of
granular behavior are generic and which are due to details of
energy injection.

I. METHODS

The primary granular system under investigation consists
of a 1:1 bidisperse mixture of chrome-coated steel ball bear-
ings with diameters of d,=11/32 inch=0.873 cm and d;
=1/4 inch=0.635 cm; the diameter ratio is 1.375; the
masses are 2.72 and 1.05 g, respectively. These beads roll on
a circular horizontal sieve, which is 6.97 inches in diameter
and has a 150 wm mesh size. The packing fraction, equal to
the fraction of projected area occupied by the entire collec-
tion of beads, is varied across the range 0.487 < ¢<<0.826 by
taking the total number of beads across the range 262 <N
<444,

The motion of the beads is excited by a vertical upflow of
air through the mesh at fixed superficial speed 950+10 cm/s.
This is the volume per time of air flow, divided by sieve area;
the air speed between the beads is greater according to the
value of ¢. The air speed is large enough to drive stochastic
bead motion by turbulence (Re=~ 10%), but is small enough
that the beads maintain contact with the sieve and roll with-
out slipping. The air speed is also large enough that the beads
move smoothly and equally in all directions, without regard
to the discrete holes in the sieve. The uniformity of the air-
flow is achieved by mounting the sieve atop a 1.5X 1.5
X 4 ft* windbox, and is monitored by hot-wire anemometer.

The system of beads is illuminated by six 100 W incan-
descent bulbs, arrayed in a 1 ft diameter ring located 3 ft
above the sieve. Specularly reflected light from the very top
of each bead is imaged by a digital CCD camera, Pulnix
6710, placed at the center of the illumination ring. The sens-
ing element consists of a 644 X484 array of 10X 10 um?
square pixels, 8 bits deep. Images are captured at a frame
rate of 120 Hz, converted to binary, and streamed to hard
disk as AVI movies using the lossless Microsoft RLE codec.
Run durations are 20 min. The threshold level for binary
conversion is chosen so that each beads appears as a small
blob about 9 and 18 pixels in area for the small and large
beads, respectively. Note that the spot size is smaller than the
bead size, which aids in species identification and ensures
that colliding beads appear well separated. The minimum
resolvable bead displacement, below which there is a fixed
pattern of illuminated pixels within a blob, is about
0.1 pixels.

The AVI movies are post-processed using custom LAB-
VIEW routines, as follows, to deduce bead locations and
speeds. For each frame, each bead is first identified as a
contiguous blob of bright pixels. Bead locations are then
deduced from the average position of the associated illumi-
nated pixels. Individual beads are then tracked uniquely vs
time, knowing that the displacement between successive
frames is always less than a bead diameter. Finally, positions
are refined and velocities are deduced by fitting position vs
time data to a cubic polynomial. The fitting window is 5
points, defined by Gaussian weighting that nearly vanishes at
the edges; this choice of weighting helps ensure continuity of
the derivatives. The rms deviation of the raw data from the
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polynomial fits is 0.0035 cm, which corresponds to
0.085 pixels—close to the minimum resolvable bead dis-
placement. The accuracy of the fitted position is smaller ac-
cording to the number of points in the fitting window: about
0.0035 cm/+5=0.0016 cm. This and the frame rate give an
estimate of speed accuracy as 0.2 cm/s. An alternative
analysis approach is to run the time-trace data through a low
pass filter using Fourier methods. We find very similar re-
sults to the weighted polynomial fits for a range of cutoff
frequencies, as long as the rms difference between raw and
filtered data is between about 0.1 and 0.3 pixels. While there
is no significant difference in the plots presented below, we
slightly prefer the polynomial fit approach based on qualita-
tive inspection—it is much slower but appears better at hit-
ting the peaks without giving spurious oscillations.

II. GENERAL

For orientation, Fig. 1(a) shows representative configura-
tions for two area fractions ¢=48.7 and 80.9 %. To mimic an
actual photograph, a disk with the same diameter as the bead
has been centered over each bead’s position, with a darker
shade for the big beads. Note that the configurations are dis-
ordered, and that the two bead species are distributed evenly
across the system. With time, due to the upflow of air, the
beads move about and explore different structural configura-
tions. Over the duration of a twenty minute run, at our lowest
packing fractions, each bead has time to sample the entire
cell several times over. The beads never crystallize or segre-
gate according to size. Neighboring grains never stick to-
gether, and air-mediated interactions appear repulsive. Over-
all, the system appears to be both stationary and ergodic.
However, the beads tend to idle for a while if they come in
contact with the boundary of the sieve. Therefore, statistics
are accumulated for beads within a central region of interest
to prevent the contamination of bulk behavior by boundary
beads.

In the next sections we quantify first structure and then
dynamics, and how they both change with increasing pack-
ing fraction on approach to jamming. A two-dimensional ran-
dom close packing of bidisperse hard disks can occupy a
range of area fractions less than about 84%, depending on
diameter ratio and system size [16,17]. We find the random
close packing of our system of bidisperse beads to be at an
area fraction of ¢,=0.83. If we add more beads, in attempt to
exceed this value, then there is not enough room for all beads
to lie in contact with the sieve—some are held up into the
third dimension by enduring contact with beads in the plane.
So we expect the jamming transition to be at or below ¢,
=0.83 depending on the strength and range of bead-bead
interactions. Earlier, we found that the upflow of air creates a
repulsion between two isolated beads that can extend to
many bead diameters [13]. Nevertheless, we shall show here
that our system remains unjammed all the way up to ¢, and
that it develops several tell-tale signatures on approach jam-
ming.

II1. STRUCTURE

A. Coordination number

Perhaps the simplest structural quantity is the coordina-
tion number Z, equal to the number of nearest neighbors for
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FIG. 1. (a) Example configurations for area
fractions ¢=48.7% and ¢=80.9%, with the big
beads colored darker than the small beads. (b),(c)
Voronoi tessellations for these configurations
with cells shaded darker for increasing coordina-
tion number and circularity, respectively.

each bead. This can be most conveniently measured by con-
structing a Voronoi tessellation, which is dual to the position
representation, and by counting the number of sides of each
polygonal Voronoi cell. Examples are shown in Fig. 1(b) for
the same configurations shown in Fig. 1(a). Here the Voronoi
cells are shaded darker for greater numbers of sides. The
coordination number ranges between 3 and 9, but by far the
most common numbers are 5, 6, and 7 irrespective of area
fraction. It seems that five- and seven-sided cells appear to-
gether, and that six-sided cells sometimes appear in small
compact clusters.

The distribution P(Z) of coordination numbers, and trends
vs area fraction, are displayed in Fig. 2. The results are ob-
tained by averaging over all times and over all beads away
from the boundary. The bottom plot shows actual distribu-
tions for three area fractions, two of which are the same as in
Fig. 1. The main effect of increasing the area fraction is to
increase the fraction of seven-sided cells at the expense of all

others, until essentially only five-, six-, and seven-sided cells
remain. This trend is more clearly displayed in a contour
plot, Fig. 2(a), where the value of P(Z) is indicated by color
as a function of both Z and area fraction ¢. For area fractions
above about 74%, indicated by a dashed white line, the four-,
eight-, and nine-sided cells have essentially disappeared.
This effect is rather subtle, owing to the discrete nature of the
coordination number. Six-sided cells are always the most
plentiful; their abundance gently peaks near 74%. While
such changes are fully developed by 74%, they are first
barely detectable near about 65%.

B. Circularity

A more dramatic measure of structural change upon ap-
proach to jamming is found by considering the shapes of the
Voronoi cells. One choice for a dimensionless measure of
deviation from circularity is
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FIG. 2. (Color online) (a) Contour plot of the coordination num-
ber distribution; red is for large probability density and blue is for
small. The dashed white line indicates ¢=0.74. (b) Coordination
number distributions for three area fractions, as labeled.

(= P*(47A), (1)

where P is the cell perimeter and A is the cell area. This
quantity was recently used to study crystallization of two-
dimensional systems, both in simulation [18] and experiment
[10]. By construction { equals one for a perfect circle, and is
higher for more rough or oblong shapes; for a regular
Z-sided polygon it is

{;=(ZIm)tan(7/Z), (2)

which sets a lower bound for other Z-sided polygons. As an
example in Fig. 1(c) the Voronoi cells are shaded darker for
more circular shapes, i.e., for those with smaller noncircular-
ity shape factors. Since {; decreases with increasing Z, it
may be expected that the shape factor is related to coordina-
tion number. The advantage is that { is a continuous variable
while Z is discrete.

Shape factor distributions P({) and the way they change
with increasing area fraction, are displayed in Fig. 3(b).
These are obtained by constructing Voronoi tessellations, and
averaging over all times and over all beads. At low area
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FIG. 3. (Color online) (a) Contour plot of the noncircularity
shape factor distributions for the Voronoi tessellation polygons. Be-
yond about 74% (dashed white line) a well formed second peak
develops and the distribution does not change much. (b) Shape
factor distributions for a sequence of area fractions; the thick green
curve is for ¢=74.4%. The labels 7, 6, 5, and 4 show the minimum
shape factors for polygons with that number of sides.

fractions, P({) exhibits a single broad peak. At higher area
fractions, this peaks moves to lower {, i.e., to more circular
domains, and eventually bifurcates into two sharper peaks.
This trend can be seen, too, in the contour plot of Fig. 3(a),
where color indicates the value of P({) as a function of both
noncircularity { and area fraction ¢. This plot shows that the
double peak becomes essentially completely developed
around ¢=0.74. This is the same area fraction singled out by
a subtle change in the coordination number distribution.
Thus the shape factor and its distribution are useful for track-
ing the change in structure as a liquid-like system approaches
a disordered jammed state.

The origin of the double peak in the shape factor distri-
bution P({) can be understood by considering the contribu-
tions P,({) made by cells with different coordination num-
bers. These contributions are defined such that P({)
=27 ,P,({) and P(Z)=] ?ZPZ(g)dg; in particular, cells with
coordination number Z contribute a subdistribution P,({)
which must vanish for < ¢, according to Eq. (2) and which
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FIG. 4. (Color online) Noncircularity shape factor distributions
for the Voronoi tessellation polygons for (a) ¢=48.7% and (b) ¢
=80.9%. Thick black curves are the actual distributions, and the
thin colored curves are the contributions from cells with different
numbers of sides, as labeled.

subtends an area equal to the coordination number probabil-
ity. As an example, the shape factor distribution is shown
along with the individual contributions in Fig. 4. At low area
fractions, in the top plot, the broad peak in P({) is seen to be
composed primarily of overlapping broad contributions from
five-, six-, and seven-sided cells. At high area fractions, in
the bottom plot, the double peak in P({) is seen to be caused
by five-sided cells for the right peak and by overlapping
contributions of six- and seven-sided cells for the left peak.
At these higher area fractions, the individual contributions
P,({) are more narrow and rise more sharply from zero for
{>{;. In other words, the Voronoi cells all become more
circular at higher packing fractions. Due to disorder, there is
a limit to the degree of circularity that cannot be exceeded
and so the changes in the circularity distribution eventually
saturate. For our system this happens around ¢=0.74, which
is well below random close packing at ¢.=0.83. As with
changes in the coordination number distribution, changes in
the circularity factor distributions may be first detected near
about 65%.

C. Radial distribution

We now present one last measure of structure that is com-
monly used in amorphous systems: the radial or pair distri-
bution function g(r). This quantity relates to the probability
of finding another bead at distance » away from a given bead.
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For large r, it is normalized to approach one—indicating that
the system is homogeneous at long length scales. For small r
in hard-sphere systems such as ours, it vanishes for r less
than the sum of bead radii. Since we have two species of
beads, big and small, there are four different distributions to
consider: between any two beads, between only big beads,
between big and small beads, and between only small beads.

Data for all four radial distribution functions are collected
in Fig. 5. As usual, these data were obtained by averaging
over all times and over all beads away from the boundary.
The bottom row shows functions plotted vs r for different
area fractions, while the top row shows contour plots where
color indicates the value of g(r) as a function both r and area
fraction; radial distance is scaled by the sum of bead radii d;;.
All four radial distribution functions display a global peak at
hard core contact, r/d,-j:l. For increasing area fractions,
these peaks become higher and more narrow, while oscilla-
tions develop that extend to larger r. Also, near r/d;;=2 there
develops a second peak that grows and then bifurcates into
two separate peaks. Both the growth of the peak at r/d;=1,
relative to the deepest minimum, and the splitting of the peak
near r/d;;=2 have been taken as structural signatures of the
glass transition [ 19-22]. For our system the split second peak
becomes fully developed for area fractions greater than about
¢$=0.74, the same area fraction noted above with regards to
changes in the Voronoi tessellations.

D. Summary

Well-defined features develop in several structural quan-
tities as the area fraction increases. The most subtle is an
increase in the number of seven-sided Voronoi cells at the
expense of all other coordination numbers, and the disap-
pearance of nearly all four- and nine-sized cells. The most
obvious are the splitting of peaks in the shape factor distri-
bution and the radial distribution functions. These key quan-
tities are extracted from our full data sets and are displayed
vs area fraction ¢ in Fig. 6. The top plot shows the fraction
P(Z) of Voronoi cells with Z sides, for several coordination
numbers; the middle plot shows peak and valley values of
the probability density P({) for Voronoi cells with shape fac-
tor {; the bottom plot shows peak and valley values of the
pair distribution function g(r) for small beads. These three
plots give a consistent picture that ¢=0.65 is the character-
istic area fraction for the beginning of structural change and
$=0.74 is the characteristic area fraction for the full devel-
opment of structural change.

IV. DYNAMICS
A. Data

For the remainder of the paper we focus on bead motion,
and how it changes in response to the structural changes
found above an area fraction of 74%. The primary quantity
we measure and analyze is the mean-squared displacement
(MSD) that the beads experience over a time interval 7
(Ar*(7)) vs 7. The MSD is readily measured directly from
time and ensemble averages of the position vs time data; it
can also be computed efficiently from position autocorrela-
tion data using Fourier methods. Results are shown in Figs.
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FIG. 5. (Color online) The radial distribution function computed between (a),(e) all beads; (b),(f) big beads; (c),(g) small and big beads;
and (d),(h) small beads. The top row shows contour plots, where blue is for large g and red is for small; the dashed white line represents
¢=0.74. The bottom row shows data curves for different area fractions; the thick green curves are for ¢=0.744. The grayed region represents
the distance excluded by hard-core contact, for r less than the sum d;; of radii.

7(a) and 7(b) for the big and small beads, separately. At short
times, the bead motion is ballistic and characterized by a
mean-squared speed according to (Ar?(7))=(v*)7. Ourframe
rate is 120 Hz, corresponding to a shortest delay time of 7
=0.0083 s, which is fast enough that we are able to observe
ballistic motion over about one decade in time for all area
fractions. At long times, the bead motion is diffusive and
characterized by a diffusion coefficient according to
(Ar*(1))=4D7. Our run durations are 20 min, corresponding
to a longest delay time of 7=1200 s, which are long enough
for the beads to explore the entire system several times at the
lowest area fractions. The crossover from ballistic to diffu-
sive regimes becomes progressively slower as the area frac-
tion increases. Our run durations are long enough to fully
capture the diffusive regime at all but the highest area frac-
tions. Thus our full position vs time dataset, for all beads and
area fractions, should suffice for a complete and systematic
study of changes in dynamics as jamming is approached.
The MSD has long been used to characterize complex
dynamics. In simple systems there is a single characteristic
time scale given by the crossover from ballistic to diffusive
regimes. In supercooled or glassy systems, the crossover is
much more gradual and there are two characteristic time
scales. The shortest, called the “/8” relaxation time, is given
by the end of the ballistic regime. The longest, called the “a”
relaxation time, is given by the beginning of the diffusive
regime. At greater degrees of supercooling in glass-forming
liquids, and at greater packing fractions in colloidal suspen-
sions, the « relaxation time increases and a corresponding
plateau develops in the MSD. As seen in our MSD data of
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FIG. 6. (Color online) The area fraction dependence of (a) the
occurrence probability P(Z) of Voronoi cells with Z sides, and peak
and valley values of (b) the shape factor distribution and (c) the pair
distribution function for small beads.
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of delay time. The left-hand plots are for the big beads and the right-hand plots are for the small beads. Area fraction color codes for the all

plots are labeled in (c),(d); the thick green curve is for ¢p=74.4%. Note that the mean-squared displacement saturates at the square of the

sample cell radius. The squares of bead diameters are d§=0.76 cm? and df=0.40 cm?. The square of the position resolution is

(0.0016 cm)?=3 X 107° cm?.

Figs. 7(a) and 7(b), this same familiar sequence of changes
occurs in our system as well. The greater the delay in the
onset of diffusive motion, the more “supercooled” is our sys-
tem and the closer it is to being jammed—where each bead
has a fixed set of neighbors that never changes.

Another similarity between the dynamics in our system
and thermal systems can be seen by examining the kurtosis
of the displacement distribution. For a given delay time,
there is a distribution P(Ax) of displacements. By symmetry
the average displacement and other odd moments must all
vanish. The second moment is the most important; it is the
MSD already discussed. If the distribution is Gaussian, a.k.a.
normal, then all other even moments can be deduced from
the value of the MSD. For example the “kurtosis” is the
fourth moment scaled by the square of the MSD and with the
Gaussian prediction subtracted; by construction it equals
zero for a Gaussian distribution, and otherwise is a dimen-
sionless measure of deviation from “normality.” The kurtosis
of the displacement distribution has been used in computer
simulation of liquids, both simple [23] and supercooled
[24-26], as well as in scattering [27] and imaging experi-
ments of dense colloidal suspensions [28—31]. These works
consider a quantity a, equal to 1/3 of the kurtosis, and find
that the displacement distribution is Gaussian in ballistic and
diffusive regimes, but becomes non-Gaussian with a peak in
the kurtosis at intermediate times. We computed the kurtosis
of the displacement distribution for our system, with results
displayed vs delay time in Figs. 7(c) and 7(d) for many area
fractions. As in thermal systems, our kurtosis results display
a peak at intermediate times and becomes progressively
more Gaussian at late times. Furthermore, the peak increases

dramatically once the area fraction rises above about 74%,
particularly for the large beads.

The kurtosis data in Figs. 7(c) and 7(d) do not vanish at
short times, by contrast with thermal systems. Instead, we
find that the kurtosis decreases to the left of the peak and
saturates at a nonzero constant upon entering the ballistic
regime. At these short times, the displacement distribution
has the same shape as the velocity distribution since Ax
=v,7. Indeed our velocity distributions are non-Gaussian
with the same kurtosis as the short-time displacement distri-
butions. This reflects the nonthermal, far-from-equilibrium,
driven nature of our air-fluidized system. Another difference
from thermal behavior, as we will show in the next subsec-
tion, is that the two bead species have different average ki-
netic energies—which is forbidden by equipartition for a
thermal systems.

While the second and fourth moments of the displacement
distributions capture many aspects of bead motion, another
dynamical quantity has been considered recently [16,32-34]:
the density (D(f)) of vibrational states of frequency f. At
high frequencies, the behavior of (D(f)) reflects the short
time ballistic nature of bead motion. At low frequencies, the
behavior of (D(f)) reflects on slow collective relaxations. If
the system is unjammed, there will be zero-frequency trans-
lational relaxation modes with relative abundance set by the
value of (D(0)). If the system is fully jammed, by contrast,
there can be no zero-frequency modes and hence (D(f)) must
vanishes for decreasing f. Thus the form and the limit of
(D(f)) at low frequencies give a sensitive dynamical signa-
ture of the approach to jamming. This shall be our focus,
while by contrast in Refs. [16,32-34] the focus was on the
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FIG. 8. (Color online) Density of vibrational states of frequency
f, for various packing fractions; the thick green curve is for ¢
=74.4%.

behavior of low frequency modes above close packing on
approach to unjamming.

The density of states may be computed from the velocity
time traces, v;(f), for all beads i [35]. The mass-weighted
ensemble average of time-averaged velocity autocorrelations
w(r)=2mgv,(t)-v,(t+ 7))/ Zm;, is the key intermediate quan-
tity; its Fourier transform is w(f) and has units of cm?/s. The
final step is to compute the modulus

(DY = \Nw(HHw' (f). 3)

The angle brackets in this notation are a reminder that this is
an ensemble average of single-grain quantities. By construc-
tion, the integral of Eq. (3) over all frequencies is equal to
the mass-weighted mean-squared speed of the beads. While
Eq. (3) appears to be a purely mathematical manipulation,
the identification of the right-hand side with the density of
states requires that modes be populated according to the
value of kT; hence, for nonthermal systems such as ours, the
result is an effective density of states that only approximates
the true density of states. Whatever the accuracy of this iden-
tification, both the expression for (D(f)) in Eq. (3) and the
mean-squared displacement may be computed from velocity
autocorrelations, and thus do not embody different physics;
rather, they give complementary ways of looking at the same
phenomena and serve to emphasize different features.

The effective density of vibrational states for our system
of air-fluidized beads is shown in Fig. 8, with separate curves
for different area fractions. At low ¢ there are many low
frequency modes and (D(f)) is nearly constant until drop-
ping off at high frequencies. At higher ¢, the number of low
frequency modes gradually decreases; (D(f)) is still constant
at low f, but it increases to a peak before dropping off at high
/- Even at the highest area fractions, (D(f)) is nonzero at the
smallest frequencies observed, as given by the reciprocal of
the run duration.

B. Short and long-time dynamics

The quantities that specify the ballistic and diffusive mo-
tion at short and long times, respectively, are the mean-
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FIG. 9. (Color online) (a),(b) Kinetic energy vs area fraction for
big and small beads, respectively. The time average for each bead is
shown by a small dot; the ensemble average over all beads is shown
by +. (c¢) The kinetic energy ratio of small-to-big beads. The line
(d,/d,)® shows where beads move with the same mean-squared
velocity. Insets show the same quantities on a logarithmic scale.

squared speeds and the diffusion coefficients. These may be
deduced from the mean-squared displacement data, sepa-
rately for each bead. We now examine trends in these dy-
namical quantities as a function of area fraction.

We begin with the mean-squared speed. To highlight the
contrast with a thermal system, we convert it to a mean ki-
netic energy and plot the results in Figs. 9(a) and 9(b) for the
big and small beads, respectively. We show a small point for
each individual bead, as well as a larger symbol for the en-
semble average of these values. The average kinetic energies
appear to decrease nearly linearly towards zero as the area
fraction is raised towards random close packing. The scatter
in the points is roughly constant, independent of ¢, and re-
flects the statistical uncertainty in our velocity measure-
ments. There is no evidence of nonergodicity or inhomoge-
neity in energy injection by our air-fluidization apparatus;
namely, all the beads of a given species have the same aver-
age kinetic energy to within measurement uncertainty. Be-
yond about ¢=0.81 the uncertainty becomes comparable to
the mean, as set by our speed resolution, and we can no
longer readily discern the average kinetic energies. This may
be more evident in the insets, which show kinetic energies on
a logarithmic scale.

Note that the big and small beads have different average
kinetic energies. This should be expected, since the steady
state depends on the precise balance of energy input and
dissipation as set by interactions of the grains with the tur-
bulent upflow of air; the scaling with ball size, density, and
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FIG. 10. (Color online) (a),(b) Diffusion coefficient vs area frac-
tion for big and small beads, respectively. The time-average for
each bead is shown by a small dot; the ensemble average over all
beads is shown by +. (c) The diffusion coefficient ratio of small-
to-big beads. Insets show the same quantities on a logarithmic scale.

air speed is discussed in Refs. [13,14] for dilute few-bead
conditions. Equipartition is thus violated for our athermal,
driven system. This is highlighted in Fig. 9(c), which shows
the kinetic energy ratio of small to large beads. This ratio is
roughly constant at about 0.6 for the lowest area fractions. It
decreases gradually for increasing ¢, at first gradually and
then more rapidly beyond about ¢=0.78. There is no obvi-
ous feature at ¢=0.74, where structural quantities changed
noticeably. Interestingly, however, the kinetic energy ratio
appears to head toward the cube of the bead diameter ratio
on approach to random close packing. This means that the
mean-squared speeds are approaching the same value, per-
haps indicating that only extremely collective motion is pos-
sible very close to jamming. In order for one bead to move,
the neighboring bead in the path of motion must move with
the same speed. This seems a natural geometrical conse-
quence of nearly close packing, but would be a violation of
equipartition in a thermal system.

Turning now to late-time behavior, we display diffusion
coefficients vs area fraction in Figs. 10(a) and 10(b), for big
and small beads, respectively. As in Fig. 9, a small dot is
shown for each individual bead and a larger symbol is shown
for the ensemble average of these results. The average diffu-
sion coefficients appear to decrease linearly with increasing
area fraction, starting at the lowest ¢. Here there is consid-
erable scatter in the data, reflecting a level of uncertainty set
by run duration. Linear fits of diffusion coefficient vs area
fraction in this regime extrapolate to zero at the special value
¢=0.74. However, just before reaching this area fraction, the
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data fall below the fit. As shown on a logarithmic scale in the
insets, the diffusion coefficients are nonzero and continue to
decrease with increasing ¢. Beyond about ¢=0.81 the sys-
tem becomes nonergodic over the duration of our measure-
ments. Namely, some beads remain stuck in the same nearest
neighbor configurations while others have broken out. In-
deed, at these high area fractions the MSDs in Fig. 7 grow
sublinearly at the latest observed times. To obtain reliable
diffusion coefficient data in this regime would require vastly
longer run durations.

C. Time scales

Lastly we focus on characterizing several special times
that serve to demarcate the short-time ballistic and the long-
time diffusive regimes seen in the displacement statistics
data. The time scale-dependent nature of the dynamics,
which is obvious in the MSD or the density of states, is also
obvious in real-time observations or in AVI movie data. For
high area fractions, the bead configuration appears immu-
table at first; the beads collide repeatedly with an apparently
fixed set of neighbors that cage them in. Only with patience,
after hundreds or thousands of collisions, can the beads be
observed to break out of their cages, change neighbors, and
begin to diffuse throughout the system.

To measure unambiguously the characteristic time scales,
we consider the slope of the mean-squared displacement as
seen on a log-log plot:

_ 9In[(A ()]

N
() dln 7

4)
An example for one of the higher area fractions is shown in
Fig. 11(a). At the shortest delay times, when the motion is
perfectly ballistic, this slope is 2; at the longest delay times,
when the motion is perfectly diffusive, this slope is 1. For
high area fractions, such as shown, there is a subdiffusive
regime with A <1 at intermediate times; this is when a typi-
cal bead appears by eye to be stuck in a cage, rattling against
a fixed set of neighbors. For low area fractions, not shown,
there is no such “caging” and A decreases monotonically
from 2 to 1.

Several natural time scales can now be defined with use of
N(7) vs 7 data. The shortest is the delay time 73, at which the
logarithmic slope falls to A(7,)=1.5. This demarcates the
ballistic regime, below which the bead velocity is essentially
constant. At high area fractions, 7, is a typical mean-free
time between successive collisions; at low area fractions, 7,
it is also the time for crossover to diffusive motion. The other
time scales that we define all refer to the subdiffusive, caging
dynamics at high area fractions. The most obvious is the
delay time 7, at which N(7y;,) is minimum; this corre-
sponds to an inflection in the MSD on a log-log plot. Below
Tmin MOSt beads remain within a fixed cage of neighbors. The
last two special times specify the interval when the motion is
subdiffusive, with a logarithmic slope falling in the range
below 1 and above its minimum. The smaller is the delay
time 7, at which the logarithmic slope decreases half-way
from 1 down towards its minimum: A(7.)=[1+\(7y;,)]/2.
This is the time at which the beads have explored enough of
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FIG. 11. (Color online) (a) Logarithmic derivative \ of the
mean-squared displacement vs delay time, for big beads at area
fraction ¢=80%. Four special time scales can be defined from such
data, as depicted: 7, where N=1.5, 7,;,, where N\ is minimum, and
7, and 7, where \ is halfway between 1 and its minimum. (b)
Density of state, for big beads at ¢=80%, marked with the four
special time scales. (¢) Contour plot of the logarithmic derivative
for the big beads, where color indicates the value of \, as a function
of both area fraction and delay time. Red is slope two and blue is
slope zero; caged dynamics are when the mean-squared displace-
ment has a slope less than one, which is aqua blue. The four special
times defined by the behavior of \, as well as a fifth time 7~ at
which the displacement kurtosis is maximal, are superposed on the
contour plot; symbol key is given in the legend.

their immediate environment to “realize” they are trapped at
least temporarily within a fixed cage of neighbors; it is
longer, and distinct from, the mean-free collision time. The
longest special time scale is the delay time 7, at which the
logarithmic slope increases half way from its minimum up
towards 1: N(7,)=[1+A(7y;,)]/2. This is the time beyond
which the beads rearrange and break out of their cages; it
demarcates the onset of fully diffusive motion.

Before continuing, we note that these four special times
also correspond to features in the density of states. As shown
in Fig. 11(b), the density of states drops to zero precipitously
for frequencies above 1/ 7, the reciprocal of the ballistic-or
collision mean-free time. The density of states reaches a peak
at 1/7,, corresponding to the time that beads “realize” they
are stuck at least temporarily within a cage. For lower fre-
quencies, the logarithmic derivative of (D(f)) vs f has an
inflection at roughly 1/7,;,. And at the lowest frequencies,
(D(f)) approaches a constant value below about 1/7,. Thus
we could have analyzed all data in terms of (D(f)); however
we prefer to work with the mean-squared displacement since
it does not involve numerical differentiation.
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Results for the special timescales are collected in Fig. 11
as a function of area fraction. Actual data points are super-
posed on top of a contour plot of the logarithmic derivative,
where color (online) fans through the rainbow according to
the value of \: red for ballistic, green for diffusive, and blue
for subdiffusive. With increasing ¢, the ballistic time scale
decreases steadily by a factor of nearly 10 as close as we can
approach random close packing. Note that with our definition
of 7,, these data points lie near the center of the yellow band
demarcating the end of the red ballistic regime. Below ¢
=0.65 the motion is never subdiffusive, and 7, is the only
important time scale. Right at ¢=0.65 the motion is only
barely subdiffusive, for a brief moment, so that all three as-
sociated times scales nearly coincide. This is the same area
fraction noted in earlier sections for the onset of structural
changes. Above ¢=0.74 the caging is sufficiently strong that
the time scale for rearrangement 7, is ten times longer than
the time scale 7, for “realization” that there is caging. At
progressively higher area fractions this separation in time
scales grows ever stronger. On approach to jamming at ran-
dom close packing, the cage realization time decreases to-
wards a nonzero constant, while the cage break-up or rear-
rangement time 7, increases rapidly towards our run duration
and appears to be diverging.

Note that the two time scales 7, and 7, capture the sub-
diffusive caging dynamics better than just the delay time 7,
at which the logarithmic derivative is minimum and the mo-
tion is maximally subdiffusive. One reason is that 7, is
difficult to locate for extremely subdiffusive motion, where
there is a wide plateau in the MSD and hence where \ is
nearly zero over a wide range of delay times. This difficulty
can be seen in both Fig. 11(a), where \ remains close to its
minimum for over two decades in delay time, as well as in
Fig. 11(c) above about ¢=0.8, where 7., data jump ran-
domly between about 2 s and about 37,.. The other reason is
that 7,,;, does not appear to be either a linear or geometric
average of the cage “realization” and breakup times. Rather,
the shape of N(7) vs In(7) is asymmetric, with a minimum
closer to the cage ‘“realization” time. Thus it is useful to
know the two times 7. and 7, that together specify the sub-
diffusive dip of A(7) below one, just as it is useful to know
the full width at half maximum of a spectrum of unspecified
shape.

Note too that 7. and 7, are distinct from the time 7 at
which the kurtosis is at maximum. Results for 7~ are ex-
tracted from our kurtosis data, and are displayed as open
squares along with other characteristic times in Fig. 11. At
low area fractions, even when there is no subdiffusive re-
gime, the kurtosis exhibits a maximum at delay time 7 that
is several times the ballistic-collision time 7;,. With increas-
ing area fraction, 7 decreases. Once a subdiffusive regime
appears, the value of 7 is close to the time 7, at which grains
“realize” they are stuck in a cage. Data in Fig. 11 for both 7,
and 7 decrease with increasing area fraction, ¢, on approach
to jamming, while the time 7, signalling the end of the sub-
diffusive regime appears to grow without bound. The de-
crease of 7 with ¢ agrees with previous observations on
colloids [29-31], but contrasts with statements that 7 corre-
sponds to the cage-breakout a-relaxation time beyond which
the motion is diffusive. To emphasize, we find that the tail of
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the displacement distribution is largest relative to a Gaussian,
and hence that the kurstosis is maximal, at the beginning of
the subdiffusive regime. At that time most beads have been
turned back by collision, but a few prolific beads move at
ballistic speed roughly one diameter—which is long com-
pared to the rms displacement. This observation is not an
artifact of limited spatial or temporal resolution or of limited
packing fraction range, which are all notably better than in
previous experiments. It is also not an artifact of our analysis
method; indeed, if we filter too strongly then the kurtosis
peak shifts to later times.

D. Jamming phase diagram

Before closing we now summarize our structure and dy-
namics observations and place them in the context of the
jamming phase diagram. By adding more beads to our sys-
tem at fixed air speed, we control the approach to jamming
two ways. First, most obviously, the area fraction increases
towards random close packing at ¢.=0.83. Second, the av-
erage kinetic energy of the beads decreases—roughly lin-
early with ¢ according to the kinetic energy data shown in
Fig. 9. Both aspects are captured by the trajectory on a jam-
ming phase diagram plot of kinetic energy vs area fraction.
To get a single dimensionless measure of kinetic energy, we
divide the mass-weighted average kinetic energy of the beads
by a characteristic gravitational energy given by average ball
weight times diameter; the result is denoted as a scaled ef-
fective temperature 7/(mgd). This scaling reflects the natural
energy for air-mediated interactions in a gas-fluidized sys-
tem, where turbulent forces both parallel and perpendicular
to the plane of motion are of order mg. The particular
T/(mgd) vs ¢ trajectory followed by our experiments is
shown by open symbols in Fig. 12. It is a diagonal line that
terminates at {T=0, ¢= .}, which is the special point in the
jamming phase diagram known as “point J” [15,16]. On ap-
proach to point J our system remains unjammed, but devel-
ops telltale features in the Voronoi tessellations and in the
mean-squared displacement indicating that jamming is near.
In particular the structural changes saturate, and the ratio
7./ 7, of cage breakup to “realization” times exceeds 10, for
points along the trajectory closer to point J than {7/(mgd)
=0.007, ¢=0.74}; we then say the system is “prejammed.” In
this prejammed region, we did not observe any signs of ag-
ing; the structure and dynamics change from that of a simple
liquid but do not appear to evolve with time.

An extended region of prejammed behavior must exist
near point J, and can be mapped out by changing the experi-
mental conditions. The simplest variation is to examine ver-
tical trajectories, at fixed ¢ for the same system of steel
beads, where the effective temperature is changed by the
speed of the upflowing air. We did this for several different
area fractions, locating the special effective temperatures be-
low which the system becomes prejammed. Furthermore, to
better test the universality of our phase diagram and the
choice of energy scaling, we examined two other 1:1 bidis-
perse mixtures of spheres. This includes several constant-¢
trajectories for large hollow polypropylene spheres with di-
ameters of 1-1/8 and 1-3/8 inches, and one constant air
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FIG. 12. (Color online) The zero-stress plane of the jamming
phase diagram showing our trajectories in phase space. The primary
trajectory, which corresponds to sequences shown in all previous
plots, is given by the diagonal dashed purple curve and open circles
that intersects the “prejammed” boundary at 74% and that ends at
point J {¢»~0.83,T=0}. The grayed region is forbidden for impen-
etrable beads. The solid circles, triangles, and square denote mea-
surements of the phase boundary for large hollow polypropylene
beads, solid steel beads, and tiny solid steel beads, as shown in the
images. Each boundary point corresponds to the trajectory indicated
by the dashed going through it.

speed trajectory for very small steel spheres with diameters
of 5/32 and 1/8 inches. The resulting trajectories and pre-
jamming boundary points are shown in Fig. 12 as dashed
lines and symbols, respectively. In spite of the vast differ-
ences in bead systems, a remarkably consistent region of
pre-jammed behavior appears in the temperature vs area frac-
tion jamming phase diagram.

V. CONCLUSION

The quasi-2D system of air-fluidized beads studied in this
paper is fundamentally different from an equilibrium system.
Here all microscopic motion arises from external driving,
and has nothing to do with thermodynamics and ambient
temperature. Rather there is a constant input of energy from
the fluidizing air, and this excites all motion. As a result of
thus being far from equilibrium, the velocity distributions are
not Gaussian. Furthermore, the average kinetic energy of the
two species is not equal because of how they interact with
the upflow of air.

In spite of these differences, our system exhibits hallmark
features upon approach to jamming that are very similar to
the behavior of thermal systems. In terms of structure, our
system develops a split peak in the circular factor distribu-
tion and a split second peak in the pair distribution function.
In terms of dynamics, our system develops a plateau in the
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mean-squared displacement at intermediate times, between
ballistic and diffusive regimes, where the beads are essen-
tially trapped in a cage of nearest neighbors. And also similar
to a thermal system, the prominence of these features in-
creases with both increasing packing fraction and with de-
creasing particle energy, in a way that can be summarized by
a jamming phase diagram.

The significance of the above conclusions is to help rein-
force the universality of the jamming concept beyond just
different types of thermal systems, to a broader class of non-
equilibrium systems as well. This suggests that the geometri-
cal constraints of disordered packing plays the major role.
Our system of air-fluidized beads may now serve as a readily
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measured model in which to study further aspects of jam-
ming that are not readily accessible in thermal systems. For
example it should now be possible to characterize spatial
heterogeneities and dynamical correlations in our system, ex-
pecting the results to shed light on all systems, thermal or
not, that are similarly close to being jammed.
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